/ SPEARBIT

Neutrl Contracts Security Review

Auditors
OxRajeev, Lead Security Researcher
Kurt Barry, Lead Security Researcher
Chinmay Farkya, Associate Security Researcher

Report prepared by: Lucas Goiriz

August 4, 2025

Contents

1 About Spearbit 2
2 Introduction 2
3 Risk classification 2
3.1 Impact e 2
3.2 Likelihood e e 2
3.3 Actionrequired for severity levels 2
4 Executive Summary 3
5 Findings 4
51 Medium Risk L e 4
5.1.1 Users can decrease their assetlock endtimes 4
5.2 Low Risk e e 4
5.2.1 Granting multiple roles to the same addressisrisky 4
5.2.2 Removed yield tokens can never be added again affecting protocol yield strategy 5
5.2.3 Using a single EOA deployer for all privileged roles across protocolisrisky 5
5.2.4 Users can take advantage of share values changing suddenly when the vesting period is
iNCreased 6
5.2.5 If coolDownDuration is lowered, users may be able to reduce their cooldown end times . . . 7
5.2.6 Yield accrual in YieldDistributor will fail if NUSD mint limit is exceeded 8
5.83 GasOptimization e e 9
5.3.1 mintRequestId and redemptionRequestIdcanbecached 9
5.3.2 getPendingMintRequests() and getPendingRedemptionRequests() may hit OOG exception 9
5.3.3 Redundant order type checks inmint() andredeem() 10
5.3.4 Redundantgetters e 10
5.3.5 Unnecessary storagefield e 10
5.3.6 Unnecessary transfer of SNUSD shares in ELPDistribution.proceedToELPDistribution() 11
5.4 |Informational e 11
5.4.1 Missing event emission for privileged functions reduces offchain transparency 11
5.4.2 Unused code constructs reduce readability 11
5.4.3 Centralized roles and responsibilities across the protocol are susceptible to misuse 11
5.4.4 Event parameters can be indexed for efficient lookups 13
5.4.5 Symbol instead of name passed to ERC20Permit constructorinsNUSD 13
5.4.6 Missing zero-address checks on critical protocol addresses 13
5.4.7 Miscellaneous issues reduce readability L Lo o 13
5.4.8 Use _msgSender () instead of msg.sender in SingleAdminAccessControl 14
5.4.9 Unusedimports e 14
5.4.10 Consider additional validationchecks 14
5.4.11 Misleading benefactor value in Redeem event when a queued redemption request is served . 15
5.4.12 Yield should be accrued before removing a yieldToken from YieldDistributor 15
5.4.13 Incorrect comments L e 15
5.4.14 AUTHORIZED role is not set up in AssetReserve constructor 16
5.4.15 Pending request listing functions include expired requests in the returned arrays 16
5.4.16 Subcontract-specific constructs do not belong inbase contracts. 16
5.4.17 Inconsistent use of errors in BaseMintRedeem and derived contracts 17

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Neutrl is a market-neutral synthetic dollar designed to unlock untapped yield opportunities in OTC and altcoin
markets. Neutrl leverages OTC arbitrage, funding rate inefficiencies, and DeFi-native market-neutral strategies to
provide a single, high-yield access point for capital allocators.

Disclaimer: This security review does not guarantee against a hack. It is a snapshot in time of Neutrl Contracts
according to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High | Impact: Medium | Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium | High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

+ High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

» Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

* Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood
» High - almost certain to happen, easy to perform, or not easy but highly incentivized
* Medium - only conditionally possible or incentivized, but still relatively likely

» Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels
+ Critical - Must fix as soon as possible (if already deployed)
+ High - Must fix (before deployment if not already deployed)
* Medium - Should fix

* Low - Could fix

https://spearbit.com

4 Executive Summary

Over the course of 9 days in total, Neutrl engaged with Spearbit to review the neutrl-contracts protocol. In this
period of time a total of 30 issues were found.

Summary
Project Name Neutrl
Repository neutrl-contracts
Commit 00949211
Type of Project Stablecoin, Yield
Audit Timeline Jul 21st to Jul 30th

Issues Found

Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 0 0 0
Medium Risk 1 1 0
Low Risk 6 5 1
Gas Optimizations 6 3 2
Informational 17 13 4
Total 30 22 7

https://docs.neutrl.fi/
https://spearbit.com
https://github.com/cantina-forks/neutrl-contracts
https://github.com/cantina-forks/neutrl-contracts
https://github.com/cantina-forks/neutrl-contracts/tree/00949211b238a5715792ae82ffa99802578db6b2/

5 Findings
5.1 Medium Risk

5.1.1 Users can decrease their asset lock end times

Severity: Medium Risk
Context: AssetlLock.sol#L161

Description: The AssetLock.lockAsset () function allows users to add assets to an existing locked position. They
are also able to specify a new duration which is applied to the position without regard for the existing expiration:

lockEndTime: uint64(block.timestamp + _lockDuration)

It's possible for the new lock end time to be earlier than the original lock end time. This applies as well to the
lockAssetOnBehalf () function added in PR 20

Recommendation: Use the maximum of the current lockEndTime and block.timestamp + _lockDuration as
the updated lockEndTime.

Neutrl: Fixed in PR 35.
Spearbit: Fix verified.

5.2 Low Risk

5.2.1 Granting multiple roles to the same address is risky
Severity: Low Risk

Context: AssetlLock.sol#L.82-L84, Router.sol#L129-L131, NUSD.sol#L41-L42, sNUSD.sol#L103-L104,
YieldDistributor.sol#L53-L54

Summary: Granting multiple roles, which have different levels/types of authorization, to the same address is risky
because it defeats the motivation for role based access control to impose separation of privileges.

Finding Description: Different protocol components define different roles to enforce role based access control.
However, all the roles are initialized to a single address/account. This defeats the purpose of role based access
control:

1. NUSD assigns _admin to both DEFAULT_ADMIN_ROLE and DENYLIST_MANAGER_ROLE.
SNUSD assigns _owner to both DEFAULT_ADMIN_ROLE and PAUSER_ROLE.
Router assigns _admin to DEFAULT_ADMIN_ROLE, WHITELISTER_ROLE, and PAUSER_ROLE.

Ll

AssetlLock assigns _admin to DEFAULT_ADMIN_ROLE, MANAGER_ROLE, and PAUSER_ROLE.
5. YieldDistributor assigns _admin to both DEFAULT_ADMIN_ROLE and YIELD_TOKEN_MANAGER_ROLE.

These roles have different levels/types of privileges and should be granted to different actors. DEFAULT_ADMIN_-
ROLE, which has the highest level of privilege should not be given to addresses that also control lower privileged
roles because their risk profiles are different which allows their wallet operational security to be managed propor-
tionately.

Impact Explanation: High, because if that one account is compromised then protocol functionality controlled by
all its roles is compromised.

Likelihood Explanation: Very low, assuming that single account has the highest level of operational security and
is not compromised.

Recommendation: Consider using different addresses/accounts to initialize different roles within the protocol
components.

Neutrl: PR 31

https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L161
https://github.com/Neutrl-lab/contracts/pull/20/
https://github.com/Neutrl-lab/contracts/pull/35
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L82-L84
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L129-L131
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/NUSD.sol#L41-L42
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L103-L104
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L53-L54
https://github.com/Neutrl-lab/contracts/pull/31/files

Spearbit: Reviewed that PR 31 removes multiple assignments of roles to the same address and instead moves
those role assignments to the deployment script where different addresses (dummy zero addresses for now which
are noted to be replaced later) are assigned to these different roles.

5.2.2 Removed yield tokens can never be added again affecting protocol yield strategy

Severity: Low Risk
Context: YieldDistributor.sol#L71-L89

Summary: Removed yield tokens from YieldDistributor can never be added again, which negatively affects
protocol yield strategy and distribution thereafter.

Finding Description: YieldDistributor manages and distributes yield from accepted stablecoins (USDC, USDT
and USDe) to sNUSD holders. While the yield generation happens offchain, the generated yield in USDC, USDT
and USDe is converted to NUSD via convertYieldToNUSD() and then distributed to sSNUSD holders via dis-
tributeYield().

The protocol manages the accepted yield tokens via addYieldToken() and removeYieldToken(). addYield-
Token() prevents addition of duplicated yield tokens by checking if the one being added already exists in the
yieldTokens array. removeYieldToken () removes a yield token not by removing it from the array but only marking
it as inactive via yieldTokens[i] .isActive = false.

Given this differing logic during addition and removal, once a yield token is removed by marking it as inactive, it
can never be added back again because addYieldToken() only checks for its presence and not for isActive ==
true.

Impact Explanation: Low, because not being able to add a yield token back will negatively impact protocol yield
strategy and distribution thereafter.

Likelihood Explanation: Low, assuming it is unlikely for the admin to remove a yield token and then want to add
it back later for some reason.

Recommendation: Consider checking for yieldTokens[i].isActive == true along with yieldTo-
kens[i] .token == _yieldToken in addYieldToken() logic, so that:

1. If atoken is present but isActive == false then it can be set to true.
2. If atoken is present and isActive == true then it can revert.
3. If a token is absent then it can be added.

Neutrl: Fixed in PR 22.

Spearbit: Fix verified.

5.2.3 Using a single EOA deployer for all privileged roles across protocol is risky

Severity: Low Risk
Context: (No context files were provided by the reviewer)

Summary: DeployProtocol script currently uses an EOA deployer address for all privileged roles across the
protocol, which is extremely risky.

Description: DeployProtocol script derives a deployer address from a private key read from an environment vari-
able and uses that in calls to deployDeterministic(deployer) and deployOthers(deployer). deployDetermin-
istic(deployer) uses that deployer address to initialize all privileged roles across NUSD and sNUSD contracts.
deployOthers(deployer) uses the same deployer address to initialize all privileged roles across Router, Sta-
bleMinter, Redeemer, AssetReserve, AssetLock, and YieldDistributor contracts.

Impact Explanation: High, because if that single EOA is compromised, the entire protocol can be critically im-
pacted given the centralized roles and responsibilities as documented in "Centralized roles and responsibilities
across the protocol are susceptible to misuse”

https://github.com/Neutrl-lab/contracts/pull/31
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L71-L89
https://github.com/Neutrl-lab/contracts/pull/22

Likelihood Explanation: Very low, assuming that this is a placeholder for now, will be replaced by a safer alterna-
tive and transferred immediately after deployment with a combination of multisig/mpc wallets (as communicated).

Recommendation: Consider:

1. Using safer alternatives than reading the deployer key from an environment variable as described in
Foundry's key management best practices

2. Transferring the EOA deployer to a combination of multisig/mpc wallets immediately after deployment.
3. Revoking all access from the EOA deployer immediately (and atomically) after step (2).
Neutrl: PR 30

Spearbit: Reviewed that PR 30 adds a mpcAdminWallet (dummy zero-address for now noting that this will be
replaced by the actual MPC admin wallet once its setup is complete) to which the admin roles of all deployed
contracts are immediately transferred from the earlier used deployer address in run().

5.2.4 Users can take advantage of share values changing suddenly when the vesting period is increased

Severity: Low Risk
Context: sSNUSD.sol#L125-L130

Description: The setVestingPeriod() function checks that the getUnvestedAmount () function returns zero and
reverts if not. However, an increase of the vesting period can still affect the unvested rewards, because neither
vestingAmount nor lastDistributionTimestamp are updated. This will lead to a discontinuous change in the
return of the totalAssets() function and thus affect the value per share. Specifically, if the vesting period is
lengthened, and the new value of lastDistributionTimestamp + vestingPeriod is in the future, a fraction of the
vestingAmount value will become unvested again.

Users can take advantage of this as follows:
1. Withdraw just prior to a vesting period increase. This will withdraw some amount of the vested rewards.

2. Redeposit after the increase, re-earning a portion of the previously vested rewards at the expense of other
users.

Proof of Concept: The following test can be added to test/unit/concrete/sNUSD/authorized/sNUSD_autho-
rized.t.sol and run via forge test --match-test test_ChangingVestingPeriodChangesUnvestedRewards:

function test_ChangingVestingPeriodChangesUnvestedRewards() external {
address userl = address(0x1111);
address user2 = address(0x2222);

deal (address(nusd), userl, 1 ether);
deal (address(nusd), user2, 1 ether);

// Both users depostit.

vm.startPrank (userl) ;

nusd.approve (address(sNusd), type(uint256) .max) ;
sNusd.deposit (1 ether, userl);

vm. stopPrank() ;

vm.startPrank (user2) ;

nusd.approve (address (sNusd) , type(uint256) .max) ;
sNusd.deposit (1 ether, user2);

vm. stopPrank() ;

// First transfer to create unvested rewards
vm.startPrank (rewarder) ;

deal (address(nusd), rewarder, 1 ether);
nusd.approve (address(sNusd), 1 ether);
sNusd.transferInRewards (1 ether);

https://getfoundry.sh/guides/best-practices/key-management#key-management
https://github.com/Neutrl-lab/contracts/pull/30
https://github.com/Neutrl-lab/contracts/pull/30
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L125-L130

vm. stopPrank() ;

uint256 vestingPeriod = sNusd.vestingPeriod();
vm.warp(sNusd.lastDistributionTimestamp() + vestingPeriod);

// All rewards have vested.
assertEq(sNusd.getUnvestedAmount (), 0);

// The two users, having made identical deposits at the tdentical time, have equal assets.
assertEq(sNusd.convertToAssets (sNusd.balanceOf (userl)),
— sNusd.convertToAssets(sNusd.balanceOf (user2)));

// userl withdraws just before the vesting period update
// (for simplicity, we are in instant withdrawal mode)

vm.startPrank (users.admin) ;
sNusd.setCooldownDuration(0) ;
vm. stopPrank() ;

vm.startPrank (userl) ;
sNusd.redeem(sNusd.balanceOf (userl), userl, userl);
vm.stopPrank() ;

uint256 totalAssetsBefore = sNusd.totalAssets();

vm.startPrank (users.admin) ;
sNusd.setVestingPeriod(2 * vestingPeriod);
vm. stopPrank() ;

// This should still be zero but instead it has gone back to half of the unvestedRewards value.
assertEq(sNusd.getUnvestedAmount (), 0.5e18);

// Total assets has changed discontinuously
assertEq(totalAssetsBefore - 0.5e18, sNusd.totalAssets());

// userl redeposits, including their accrued interest, to take advantage of the devalued share
— price.

vm.startPrank (userl) ;

sNusd.deposit (nusd.balanceOf (userl), userl);

vm.stopPrank() ;

// Warp to end of the new vesting period.
vm.warp(sNusd.lastDistributionTimestamp() + 2 * vestingPeriod);

// userl, despite merely withdrawing and re-depositing, and with no new rewards added,

// mow has significantly more assets than user2, because the previously added rewards have
// been redistributed in their favor.

assertEq(sNusd. convertToAssets (sNusd.balanceOf (userl)), 1799999999999999998) ;
assertEq(sNusd.convertToAssets (sNusd.balanceOf (user2)), 1200000000000000001) ;

Recommendation: Set vestingAmount to zero whenever the vesting period is updated (or just when it is length-
ened, as this issue does not apply to shortening the vesting period).

Neutrl: Fixed in PR 32.
Spearbit: Fix verified.

5.2.5 If coolDownDuration is lowered, users may be able to reduce their cooldown end times

Severity: Low Risk

https://github.com/Neutrl-lab/contracts/pull/32

Context: sSNUSD.sol#L270, sNUSD.sol#L285

Description: Both sNUSD. cooldownAssets () and sNUSD. cooldownShares () update the user's cooldown end time
as follows:

cooldowns [msg.sender] .cooldownEnd = uint104(block.timestamp) + cooldownDuration;

This overwrites the previous value. If the cooldownDuration is lowered soon enough after a user initiates a
cooldown, then the user may be able to lower their cooldownEnd value by initiating another cooldown (potentially
depositing more assets if need be).

Recommendation: Set the cooldownEnd value to the maximum of the current value and
uint104(block.timestamp) + cooldownDuration in both cooldownAssets() and cooldownShares().

Neutrl: Fixed in PR 33.
Spearbit: Fix verified.

5.2.6 Yield accrual in YieldDistributor will fail if NUSD mint limit is exceeded

Severity: Low Risk
Context: BaseMintRedeem.sol#L.172-L175, YieldDistributor.sol#L97-L118

Description: convertYieldtoNUSD() function in YieldDistributor.sol is used to accrue all yieldToken bal-
ances. It first calculates the total amount in terms of NUSD using collateral prices from ROUTER. quoteDeposit ()
and then calls the ROUTER to mint the calculated NUSD amounts for each yieldToken.

The call flow is convertYieldtoNUSD() => ROUTER.mint() => StableMinter.mint().

StableMinter.sol inherits from BaseMintRedeem.sol which does some checks on this mint order parameters.
One such check is _belowMaxMintPerBlock().

function _belowMaxMintPerBlock(uint256 mintAmount) internal view {
if (mintedPerBlock[block.number] + mintAmount > maxMintPerBlock) {
revert MaxMintPerBlockExceeded();
}

}

This check ensures that the already minted NUSD in the actual block plus the amount to be minted is below the
maxMintPerBlock value. This mint limit is shared by all users that are trying to mint NUSD from the minter contract
of that particular collateral asset.

The convertYieldtoNUSD() loops over all yieldTokens, so the whole yield distribution can fail if mint limit of any
one collateral asset's minter has been exceeded.

This can cause yield distribution failure, and delay in accruing yield to sSNUSD in a timely manner. This can also
be purposefully DOS'ed by an attacker.

This will be problematic for integrators that depend on timely yield accrual as any withdrawals from sNUSD will still
succeed even though the yield that was expected at the time was purposefully delayed by an attacker = leading
to potential loss of yield even though they contributed with their NUSD properly.

Recommendation: Consider documenting this potential threat for integrators and monitoring mint usage over time
to dynamically adjust mint limits such that yield operations do not fail.

Neutrl: We acknowledge this potential scenario where yield distribution could be disrupted by attackers exhausting
mint limits for specific collateral assets. If this situation occurs, we have several mitigation strategies available:

1. Whitelist Management.

» Since we operate with whitelisting controls, we can remove malicious actors from the whitelist to prevent
further abuse.

2. Dynamic Threshold Adjustment.

https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L270
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L285
https://github.com/Neutrl-lab/contracts/pull/33
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L172-L175
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L97-L118

+ We can increase the maxMintPerBlock threshold for affected collateral assets to ensure yield distribution
operations can proceed.

3. Operational Monitoring.

» We will monitor mint usage patterns to proactively identify and address potential DoS attempts before they
impact yield distribution.

These mitigation measures provide us with the operational flexibility to maintain timely yield accrual while protecting
against malicious interference.

Spearbit: Acknowledged.

5.3 Gas Optimization

5.3.1 mintRequestId and redemptionRequestId can be cached
Severity: Gas Optimization

Context: (No context files were provided by the reviewer)

Description: _requestMint () and _requestRedemption() load mintRequestId and redemptionRequestId from
storage three times consecutively. Given these are frequently used user flows, these repeated storage reads
unnecessarily leads to more gas usage than required.

mintRequests [mintRequestId] = _order;
mintRequestStatus[mintRequestId] = RequestStatus.PENDING;
emit RequestMint (mintRequestId, _order);

redemptionRequests[redemptionRequestId] = _order;
redemptionRequestStatus[redemptionRequestId] = RequestStatus.PENDING;
emit RequestRedemption(redemptionRequestId, _order);

Recommendation: Consider caching these storage variables to avoid repeated storage reads.
Neutrl: Acknowledged.
Spearbit: Acknowledged.

5.3.2 getPendingMintRequests() and getPendingRedemptionRequests() may hit OOG exception
Severity: Gas Optimization
Context: Router.sol#L361-L406

Description: getPendingMintRequests() and getPendingRedemptionRequests() loop through every mint and
redemption requests made in the protocol lifetime to check which of them are pending to return their details.

While this may work initially, this iterative approach is likely to hit Out-of-Gas (OOG) exception at some point in the
future when the number of requests exceed a certain number. Even if this is only used by the protocol for offchain
monitoring and accounting, the logic is suboptimal for gas usage.

Recommendation: Consider:

1. Adding a starting index parameter to these functions so that successive calls can optionally ignore the previ-
ously determined pending requests.

2. Caching mintRequestId and redemptionRequestId instead of loading them repeatedly from storage.
Neutrl: Fixed in PR 26 and PR 44.

Spearbit: Reviewed that PR 26 mitigates the issue as recommended in (1) by adding another set of functions that
take starting index as a parameter. All functions now also return only pending mint/redemption requests that expire
beyond block.timestamp. This PR however introduced an issue in getPendingRedemptionRequests () functions

https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L361-L406
https://github.com/Neutrl-lab/contracts/pull/26
https://github.com/Neutrl-lab/contracts/pull/44
https://github.com/Neutrl-lab/contracts/pull/26

where mintRequests[i] . expiry was incorrectly used instead of redemptionRequests[i] .expiry. This was later
resolved in PR 44.

5.3.3 Redundant order type checks in mint () and redeem()
Severity: Gas Optimization
Context: BaseMintRedeem.sol#L162-L168, Redeemer.sol#L65-L66, StableMinter.sol#L50-L51

Description: mint () and redeem() check their order types to be OrderType . MINT and OrderType . REDEEM respec-
tively. However, they call _verifyOrder (order) which also checks for if (order.orderType != OrderType.MINT
&& order.orderType != OrderType.REDEEM) revert InvalidInput().

These checks are redundant and the consolidated check in _verifyOrder () can be removed in favor of the specific
checks already performed at the two call sites.

Recommendation: Consider:

1. Removing if (order.orderType != OrderType.MINT && order.orderType != OrderType.REDEEM)
revert InvalidInput() from _verifyOrder().

2. Moving the duplicated check if (order.expiry < block.timestamp) revert OrderExpired() from
mint () and redeem() t0 _verifyOrder ().

Neutrl: PR 28.

Spearbit: Reviewed that PR 28 fixes the issue as recommended in (1).

5.3.4 Redundant getters
Severity: Gas Optimization
Context: AssetlLock.sol#L65-L69, AssetlLock.sol#L201-L206, AssetlLock.sol#L219-L225

Description: The getAssetInfo() and getUserLock() getters in the AssetLock contract are redundant with the
public fields assetInfo and userLocks. Having both increases bytecode size (and thus deployment costs) and
can also increase function dispatch costs on calls to the contract since the function lookup logic will be more
extensive.

Recommendation: Either remove the unnecessary getters or make the associated fields private.
Neutrl: Fixed in PR 34.
Spearbit: Fix verified.

5.3.5 Unnecessary storage field
Severity: Gas Optimization
Context: AssetLock.sol#L16

Description: The isSupported field of the AssetInfo struct used in the AssetLock contract isn't strictly necessary-
-the same effect could be achieved by allowing a maxLockCapacity of zero denote an unsupported asset. This
would eliminate a full storage slot per locked position.

Recommendation: Remove AssetLock.isSupported and rely on maxLockCapacity alone to reduce gas costs.
Neutrl: Acknowledged. We prefer to keep it for offchain SDK purposes.
Spearbit: Acknowledged.

10

https://github.com/Neutrl-lab/contracts/pull/44
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L162-L168
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Redeemer.sol#L65-L66
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/StableMinter.sol#L50-L51
https://github.com/Neutrl-lab/contracts/pull/28
https://github.com/Neutrl-lab/contracts/pull/28
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L65-L69
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L201-L206
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L219-L225
https://github.com/Neutrl-lab/contracts/pull/34
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L16

5.3.6 Unnecessary transfer of SNUSD shares in ELPDistribution.proceedToELPDistribution()
Severity: Gas Optimization
Context: ElpDistribution.sol#L152-L153

Description/Recommendation: In ELPDistribution.proceedToELPDistribution(), funds are deposited into
the sNUSD contract and then the resulting shares are transferred to a multisig address for storage:

sNUSD.deposit(totalAllocated, address(this));
sNUSD. transfer (multisig, totalAllocated) ;

The second parameter of deposit () is the address that receives the shares, so the code could be simplified to:

sNUSD.deposit (totalAllocated, multisig);

eliminating an external call and thus saving gas.
Neutrl: Fixed in PR 41.
Spearbit: Fix verified.

5.4 Informational
5.4.1 Missing event emission for privileged functions reduces offchain transparency

Severity: Informational

Context: AssetlLock.sol#L245-L.247, BaseMintRedeem.sol#L111-L121, YieldDistributor.sol#L67-L69,
YieldDistributor.sol#L97-L126

Description: While many of the privileged functions across the protocol emit events to enable offchain monitoring
and increased transparency, some are missing such event emits. This reduces offchain transparency, which is a
key aspect of Neutrl protocol to strengthen user confidence.

Recommendation: Consider emitting missed events in all privileged functions.
Neutrl: Fixed in PR 21.
Spearbit: Fix verified.

5.4.2 Unused code constructs reduce readability
Severity: Informational
Context: AssetlLock.sol#L35, AssetLock.sol#L50, BaseMintRedeem.sol#L21

Description: There are some code constructs such as declared errors and events which are unused and reduce
readability.

Recommendation: Consider revisiting their intended usage or remove them for clarity.
Neutrl: Fixed in PR 23.
Spearbit: Fix verified.

5.4.3 Centralized roles and responsibilities across the protocol are susceptible to misuse
Severity: Informational
Context: (No context files were provided by the reviewer)

Description: The protocol has several centralized roles and responsibilities across components, which are sus-
ceptible to misuse/abuse if compromised, such as:

1. NUSD MINTER_ROLE can mint arbitrary NUSD amounts to arbitrary addresses.

11

https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/elp/ElpDistribution.sol#L152-L153
https://github.com/Neutrl-lab/contracts/pull/41
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L245-L247
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L111-L121
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L67-L69
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L97-L126
https://docs.neutrl.fi/protocol-design/transparency#transparency
https://github.com/Neutrl-lab/contracts/pull/21
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L35
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetLock.sol#L50
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L21
https://github.com/Neutrl-lab/contracts/pull/23

NUSD REDEEMER_ROLE can burn arbitrary NUSD amounts from arbitrary addresses.
NUSD DENYLIST_MANAGER_ROLE can prevent arbitrary NUSD transfers.

Router WHITELISTER_ROLE can prevent arbitrary mint/redeem requests.

Router KEEPER_ROLE can serve/cancel arbitary mint/redeem requests.

Router admin can configure arbitrary minters/redeemers.

Router admin can set arbitrary order waiting periods affecting order expiry.
Minter/Redeemer admin can add/remove support for arbitrary assets.

Minter/Redeemer admin can set arbitrary min/max price for supported collateral assets.

© 0 ® N o o &~ D

Minter/Redeemer admin can set arbitrary max mints/redeems per block.

11. Admins can set arbitrary asset reserve and router addresses.

12. PAUSER_ROLE can pause/unpause various key functions.

13. YieldDistributor admin can add/remove support for arbitrary yield tokens.

14. YieldDistributor admin can recover arbitrary ERC20 tokens.

15. SNUSD BLACKLIST_MANAGER_ROLE can prevent arbitrary SNUSD transfers.

16. SNUSD admin can set arbitrary cooldown durations for unstaking/withdrawing.

17. In PR 20, the MANAGER_ROLE can indefinitely extend a user's lock end time by locking a tiny amount of tokens
just before each lock expiration while specifying the largest possible duration to update the end time far into
the future.

Recommendation: Consider:
1. Enforcing the best privilege separation possible across roles/actors.
2. Implementing the highest degree of operational security for wallet accounts controlling them.
3. Implementing timelocks for some of the most critical actions.

Neutrl: We acknowledge the centralized roles identified in the protocol and recognize the potential security risks
associated with compromised administrative keys. To mitigate the risk of compromised admin keys, we will imple-
ment the following security measures:

Security Mitigation Strategy:

1. Robust Private Key Management.
« Strict operational security (OpSec) practices for all admin wallets and role-based wallets.
* Industry-standard key storage and access protocols.

2. Multi-Party Computation (MPC) Wallet Implementation.
+ All administrative roles managed through MPC wallets with strict role-based policies.
» Multi-signature requirements for critical operations.

3. Advanced Transaction Protection.

+ Integration with third-party security solutions to detect and automatically reject malicious transactions on
MPC wallets.

» Real-time monitoring and anomaly detection for administrative actions.

These comprehensive security measures will effectively mitigate the risks associated with centralized roles while
maintaining the operational capabilities necessary for protocol functionality.

Spearbit: Acknowledged.

12

https://github.com/Neutrl-lab/contracts/pull/20

5.4.4 Event parameters can be indexed for efficient lookups

Severity: Informational
Context: sSNUSD.sol#L47-L49

Description: Events LockedAmountRedistributed, Unstaked and RequestUnstaked do not use indexed attribute
on their address parameters for more efficient lookups.

Recommendation: Consider adding indexed attribute to these event parameters.
Neutrl: Fixed in PR 24.
Spearbit: Fix verified.

5.4.5 Symbol instead of name passed to ERC20Permit constructor in sNUSD

Severity: Informational
Context: sSNUSD.sol#L101

Description: The name, rather than the symbol, is intended to be passed to the ERC20Permit constructor
(ERC20Permit.sol#L37).

However, the sNUSD contract passes the symbol. This is in contrast to the NUSD contract, which correctly uses the
token name.

Recommendation: Pass the name ("Staked NUSD") rather than the symbol to the ERC20Permit constructor in
sNUSD.

Neutrl: Fixed in PR 25.
Spearbit: Fix verified.

5.4.6 Missing zero-address checks on critical protocol addresses

Severity: Informational

Context: AssetReserve.sol#L113-L116, BaseMintRedeem.sol#L188-L191, BaseMintRedeem.sol#L213-L215,
Redeemer.sol#L41-1.42

Description: While the protocol implements zero-address checks in several places, this is missing in some of the
initializations and setter functions.

Recommendation: Consider adding zero-address checks on all critical protocol addresses to reduce accidental
errors.

Neutrl: Fixed in PR 27.
Spearbit: Fix verified.

5.4.7 Miscellaneous issues reduce readability
Severity: Informational
Context: (No context files were provided by the reviewer)

Description: There are miscellaneous minor issues related to naming, NatSpec, function visibility, missing checks
etc. across the codebase that reduce readability.

Recommendation: Consider:
1. Adding a non-zero check for amountToDistribute in redistributeLockedAmount ().

2. Making 5e18 a declared constant or a settable storage value to allow modifying the acceptable slippage in
convertYieldToNUSD().

3. Renaming startTime as lockStartTime in AssetLock.UserLock.

13

https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L47-L49
https://github.com/Neutrl-lab/contracts/pull/24
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L101
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/e4f70216d759d8e6a64144a9e1f7bbeed78e7079/contracts/token/ERC20/extensions/ERC20Permit.sol#L37
https://github.com/Neutrl-lab/contracts/pull/25
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetReserve.sol#L113-L116
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L188-L191
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L213-L215
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Redeemer.sol#L41-L42
https://github.com/Neutrl-lab/contracts/pull/27

Renaming _asset as _collateralAsset in various Router functions.
Making Router.quoteRedemption() external visibility instead of public.

Making SingleAdminAccessControl.owner () external visibility instead of public as in IERC5313.

N o g &

Changing @notice of _setMintWhitelisted() to /// @notice Internal function to set a user's
mint whitelist status.

8. Changing @notice of _setMintWhitelistEnforcement() {0 /// @notice Internal function to set the
mint whitelist enforcement.

9. Adding @param for _nusd in Router. constructor.
10. Adding @param for _multisig in ElpDistribution.constructor.
11. Using named mapping parameters for Router minters and redeemers.
Neutrl: Fixed in PR 29.
Spearbit: Fix verified.

5.4.8 Use _msgSender () instead of msg.sender in SingleAdminAccessControl

Severity: Informational
Context: SingleAdminAccessControl.sol#L30-L39

Description/Recommendation: Consider using _msgSender () instead of msg.sender in SingleAdminAccess-
Control for consistency with the OZ base class implementation (AccessControl.sol#L170).

While currently the two options are equivalent, if there's ever a contract that inherits SingleAdminAccessCon-
trol and overrides _msgSender (), then bugs could result from using msg. sender in SingleAdminAccessControl
instead of _msgSender ().

5.4.9 Unused imports

Severity: Informational

Context: Redeemer.sol#L5, Redeemer.sol#L14, StableMinter.sol#L4-L5, StableMinter.sol#L15
Description: The following imports are unused:

+ StableMinter.sol#L4-L5: The IERC20 and SafeERC20 imports are only used in the using statement on line 15;
they can be removed along with the using statement.

* Redeemer.sol#L5: The SafeERC20 import is only used in the using statement on line 14; it can be removed
along with the using statement.

Recommendation: Remove unused imports and related lines for clarity and readability.

Neutrl: Acknowledged. We prefer to keep it as a boilerplate on a future iteration of minter /redeemer, it avoids to
forget.

Spearbit: Acknowledged.

5.4.10 Consider additional validation checks

Severity: Informational

Context: BaseMintRedeem.sol#L210-L218, Router.sol#L152, Router.sol#L422-1438
Description/Recommendation:

* In Router.configureAsset (), consider validating that _asset is not NUSD as NUSD should never be its
own collateral.

14

https://github.com/Neutrl-lab/contracts/pull/29
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/utils/SingleAdminAccessControl.sol#L30-L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/e4f70216d759d8e6a64144a9e1f7bbeed78e7079/contracts/access/AccessControl.sol#L170
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Redeemer.sol#L5
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Redeemer.sol#L14
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/StableMinter.sol#L4-L5
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/StableMinter.sol#L15
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/StableMinter.sol?lines=5,5
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Redeemer.sol?lines=5,5
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L210-L218
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L152
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L422-L438

* In Router._setMinter () and Router._setRedeemer (), consider verifying that the minter or redeemer sup-
ports the specified asset.

* In BaseMintRedeem. _addAsset (), consider validating that _asset is not NUSD as NUSD should never be its
own collateral.

Neutrl: Fixed in PR 39.
Spearbit: Fix verified.

5.4.11 Misleading benefactor value in Redeem event when a queued redemption request is served

Severity: Informational
Context: Router.sol#L.235, Router.sol#L511

Description: When a queued redemption request is served, the order.benefactor value is changed to be the
Router since that's where the NUSD tokens were transferred when the request was created. This modification is
necessary for the internal _redeem() function to work correctly, but it obscures the original benefactor in the emitted
Redeem event--it will now be the Router instead of the original NUSD source. This makes this event parameter less
informative for an asynchronously executed redemption.

Recommendation: Consider modifying the code to always emit the Redeem event using the original benefactor.
Neutrl: Fixed in PR 37.
Spearbit: Fix verified.

5.4.12 Yield should be accrued before removing a yieldToken from YieldDistributor

Severity: Informational
Context: YieldDistributor.sol#L82-L89

Description: The YieldDistributor contract has methods to accrue and distribute yield according to yield token
balances accumulated in the contract. The YIELD_TOKEN_MANAGER_ROLE is supposed to periodically call conver-
tYieldToNUSD() to convert all token balances into NUSD.

There is also a way to remove a registered yield token from the distribution mechanisms, via the removeYieldTo-
ken() function which is controlled by DEFAULT_ADMIN_ROLE.

The problem here is that if the yield token is removed from the yieldTokens array without accruing its existing
balance into NUSD yield, then the existing balance will be left out of the distribution mechanism of the sNUSD
contract.

The yieldToken can also not be added again because of another issue, and can only be recovered. Since YIELD_-
TOKEN_MANAGER_ROLE and DEFAULT_ADMIN_ROLE are assumed to be separate privileged addresses, this can break
the yield distribution process.

Recommendation: Protocol has to make sure that these two calls : convertYieldToNUSD() and removeYield-
Token() are always made in the specified order by privileged roles.

Neutrl: Acknowledged.
Spearbit: Acknowledged.

5.4.13 Incorrect comments

Severity: Informational

Context: BaseMintRedeem.sol#L117-L118, sNUSD.sol#L177, YieldDistributor.sol#L17
Description: There are several instances of incorrect/ incomplete comments across the codebase :

» sNUSD.sol#L177: "This function is called by the StakingRewardsDistributor contract" should be changed
to "This function is called by the YieldDistributor contract”.

15

https://github.com/Neutrl-lab/contracts/pull/39
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L235
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L511
https://github.com/Neutrl-lab/contracts/pull/37
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L82-L89
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L117-L118
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol#L177
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol#L17
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/sNUSD.sol?lines=177,177

+ YieldDistributor.sol#L17: "A contract that manages and distributes yield from accepted stablecoins (USDC
& USDT) to sNUSD holders" should be changed to "A contract that manages and distributes yield from
accepted stablecoins (USDC,USDT & USDe) to sNUSD holders".

» BaseMintRedeem.sol#L117-L118: These two comment lines should use the term price instead of slippage;
while the terms are logically related, "slippage" usually denotes a relative price difference rather than an
absolute price (which is what is actually accepted as the argument to this function and stored in the contract).

Recommendation: Consider modifying the mentioned comments.
Neutrl: Fixed in PR 38.
Spearbit: Fix verified.

5.4.14 AUTHORIZED role is not set up in AssetReserve constructor

Severity: Informational
Context: AssetReserve.sol#1L.48-L50

Description: Across the codebase, all roles are set up in the constructor, which ensures proper role allotment at
deployment. In one instance in AssetReserve contract, the AUTHORIZED role has not been granted by default. This
role is required to move collateral assets from AssetReserve contract to custodian addresses. This can lead to no
address having the AUTHORIZED role initially, affecting protocol strategy as user funds sit in AssetReserve contract.

Recommendation: Consider granting AUTHORIZED role at deployment via constructor, for consistency.

Neutrl: Acknowledged. Most of the roles have been removed according to finding "Granting multiple roles to the
same address is risky" They are defined at deployment, for the authorized role, we are aware of this we need first
some MPC wallets being created.

Spearbit: Acknowledged.

5.4.15 Pending request listing functions include expired requests in the returned arrays

Severity: Informational
Context: Router.sol#L358-L406

Description: In the Router contract the functions getPendingMintRequests() and getPendingRedeemRe-
quests () both include pending but expired requests in the arrays they return. However, expired requests cannot
be served, only cancelled. Depending on the use cases for these functions, including expired requests may be
undesirable and lead to confusion.

Recommendation: Consider whether including expired requests is desirable. For maximum flexibility, a boolean
parameter could be added to these functions specifying whether to include expired requests or not.

Neutrl: Fixed in PR 26.
Spearbit: Fix verified.

5.4.16 Subcontract-specific constructs do not belong in base contracts

Severity: Informational

Context: BaseMintRedeem.sol#L19-L20, BaseMintRedeem.sol#L34-L35, BaseMintRedeem.sol#L53-L71,
BaseMintRedeem.sol#1L.93-L103, BaseMintRedeem.sol#L111-L121, BaseMintRedeem.sol#L148-L158,
BaseMintRedeem.sol#L170-L184, BaseMintRedeem.sol#L193-L205

Description: The BaseMintRedeem contract defines a number of fields and functions that are specific to whether
the derived contract is a minter or redeemer; in either case, the fields for the other type of derived contract are
entirely unused in the derived contract. Specifically, the fields minPrice, maxPrice, mintedPerBlock, redeemed-
PerBlock, maxMintPerBlock, and maxRedeemedPerBlock, and the associated functions that set or check these
values, are all minter- or redeemer-specific.

16

https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/YieldDistributor.sol?lines=17,17
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol?lines=117,118
https://github.com/Neutrl-lab/contracts/pull/38
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/AssetReserve.sol#L48-L50
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Router.sol#L358-L406
https://github.com/Neutrl-lab/contracts/pull/26
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L19-L20
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L34-L35
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L53-L71
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L93-L103
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L111-L121
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L148-L158
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L170-L184
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L193-L205

This is undesirable for several reasons:

» Gas costs: Derived contracts possess all of these fields and functions. This increases bytecode size (hence
deployment costs), and can increase function resolution costs at runtime.

» Possibility for mistakes: It creates the possibility of accidentally calling the wrong function and having a
transaction succeed when the intended goal was not accomplished. Concretely, imagine a governance
action that is supposed to set minPrice on the minter and maxPrice on the redeemer, but accidentally swaps
which contract each field is set on. The action will succeed with no obvious indication that a mistake was
made, whereas it would fail instantly if minters and redeemers didn't share functions unnecessarily.

+ Maintainability: It violates expectations of best practices, making the code less readable and maintainable.

Recommendation: Since the desire appears to be capable of supporting multiple minters and redeemers in the
future, refactor the inheritance structure, with an extra layer of base contracts that are specific to minters and
redeemers:

BaseMinter -- all minter contracts
/
BaseMintRedeem
\
BaseRedeemer -- all redeemer contracts

Move the minter- and redeemer-specific fields and functions to the appropriate intermediate base contract.
Neutrl: Fixed in PR 42.
Spearbit: Fix verified.

5.4.17 Inconsistent use of errors in BaseMintRedeem and derived contracts

Severity: Informational
Context: BaseMintRedeem.sol#L22-L.23, BaseMintRedeem.sol#L164-L167, Redeemer.sol#L124

Description: The BaseMintRedeem class defines a custom error ZeroInput () but uses InvalidInput() for cases
where the input is zero; only in the derived class Redeemer is ZeroInput () is used, for the exact same sort of error
that BaseMintRedeem is using InvalidInput () for.

Recommendation: Consider making the error usage more regular and consistent with the rest of the codebase.
In particular, use ZeroInput () when the input is zero, and InvalidInput () for other problems with function argu-
ments.

Neutrl: Fixed in PR 40.
Spearbit: Fix verified.

17

https://github.com/Neutrl-lab/contracts/pull/42
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L22-L23
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/BaseMintRedeem.sol#L164-L167
https://cantina.xyz/code/3f8c2409-09da-4101-95fc-9370534c88bf/src/MintRedeem/Redeemer.sol#L124
https://github.com/Neutrl-lab/contracts/pull/40

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Medium Risk
	Users can decrease their asset lock end times

	Low Risk
	Granting multiple roles to the same address is risky
	Removed yield tokens can never be added again affecting protocol yield strategy
	Using a single EOA deployer for all privileged roles across protocol is risky
	Users can take advantage of share values changing suddenly when the vesting period is increased
	If coolDownDuration is lowered, users may be able to reduce their cooldown end times
	Yield accrual in YieldDistributor will fail if NUSD mint limit is exceeded

	Gas Optimization
	mintRequestId and redemptionRequestId can be cached
	getPendingMintRequests() and getPendingRedemptionRequests() may hit OOG exception
	Redundant order type checks in mint() and redeem()
	Redundant getters
	Unnecessary storage field
	Unnecessary transfer of sNUSD shares in ELPDistribution.proceedToELPDistribution()

	Informational
	Missing event emission for privileged functions reduces offchain transparency
	Unused code constructs reduce readability
	Centralized roles and responsibilities across the protocol are susceptible to misuse
	Event parameters can be indexed for efficient lookups
	Symbol instead of name passed to ERC20Permit constructor in sNUSD
	Missing zero-address checks on critical protocol addresses
	Miscellaneous issues reduce readability
	Use _msgSender() instead of msg.sender in SingleAdminAccessControl
	Unused imports
	Consider additional validation checks
	Misleading benefactor value in Redeem event when a queued redemption request is served
	Yield should be accrued before removing a yieldToken from YieldDistributor
	Incorrect comments
	AUTHORIZED role is not set up in AssetReserve constructor
	Pending request listing functions include expired requests in the returned arrays
	Subcontract-specific constructs do not belong in base contracts
	Inconsistent use of errors in BaseMintRedeem and derived contracts

